Evidence for Geomagnetic Imprinting as a Homing Mechanism in Pacific Salmon
نویسندگان
چکیده
In the final phase of their spawning migration, Pacific salmon use chemical cues to identify their home river, but how they navigate from the open ocean to the correct coastal area has remained enigmatic. To test the hypothesis that salmon imprint on the magnetic field that exists where they first enter the sea and later seek the same field upon return, we analyzed a 56-year fisheries data set on Fraser River sockeye salmon, which must detour around Vancouver Island to approach the river through either a northern or southern passageway. We found that the proportion of salmon using each route was predicted by geomagnetic field drift: the more the field at a passage entrance diverged from the field at the river mouth, the fewer fish used the passage. We also found that more fish used the northern passage in years with warmer sea surface temperature (presumably because fish were constrained to more northern latitudes). Field drift accounted for 16% of the variation in migratory route used, temperature 22%, and the interaction between these variables 28%. These results provide the first empirical evidence of geomagnetic imprinting in any species and imply that forecasting salmon movements is possible using geomagnetic models.
منابع مشابه
Geomagnetic imprinting predicts spatio-temporal variation in homing migration of pink and sockeye salmon.
Animals navigate using a variety of sensory cues, but how each is weighted during different phases of movement (e.g. dispersal, foraging, homing) is controversial. Here, we examine the geomagnetic and olfactory imprinting hypotheses of natal homing with datasets that recorded variation in the migratory routes of sockeye (Oncorhynchus nerka) and pink (Oncorhynchus gorbuscha) salmon returning fro...
متن کاملEvidence for Geomagnetic Imprinting and Magnetic Navigation in the Natal Homing of Sea Turtles
Natal homing is a pattern of behavior in which animals migrate away from their geographic area of origin and then return to reproduce in the same location where they began life [1-3]. Although diverse long-distance migrants accomplish natal homing [1-8], little is known about how they do so. The enigma is epitomized by loggerhead sea turtles (Caretta caretta), which leave their home beaches as ...
متن کاملPhysiological Mechanisms of Imprinting and Homing Migration of Pacific Salmon
© 2016 TERRAPUB, Tokyo. All rights reserved. doi:10.5047/absm.2016.00901.0001 pink salmon are phylogenetically the most advanced salmon species, while masu salmon are considered to be the more primitive species (Murata et al. 1996). Pink salmon are also the most widely distributed species and have the largest population size, while masu salmon appear to have the most restricted distribution and...
متن کاملPotential Role of the Magnetic Field on Homing in Chum Salmon (Oncorhynchus keta) Tracked from the Open Sea to Coastal Japan
In order to examine the Earth’s magnetic intensity and inclination during homing migration of chum salmon (Oncorhynchus keta) and to present tracking data consistent with the geomagnetic imprinting hypothesis that salmon migrate homeward using the Earth’s magnetic intensity or inclination, archival tagging operations were carried out in the Bering Sea in 2012 and 2013. DST magnetic tags were at...
متن کاملHoming in Pacific salmon: mechanisms and ecological basis
Pacific salmon (Oncorhynchus spp.) are famous for their homing migrations from oceanic feeding grounds to their natal river to spawn. During these migrations, salmon travel through diverse habitats (e.g. oceans, lakes, rivers), each offering distinct orientation clues and, perhaps, requiring distinct sensory capabilities for navigation. Despite these challenges, homing is generally precise and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 23 شماره
صفحات -
تاریخ انتشار 2013